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1. INTRODUCTION

A subset of a metric space is totally bounded if, for every € > 0, it can be
covered by a finite number of sets, each with diameter ~2€. If A is totally
bounded, N(A) is the smallest number of sets in such a covering. Using N.(A)
as a coarse indicator of the size of a set, G. Strang introduced the notion that
a set can have a nucleus, a pre-eminent element at which the mass of the set is
concentrated (see [1]). Using the terminology of [2], we say that x is the nucleus
of A, if, for every neighbourhood, V, of x,

(€ -+ 0).

In heuristic terms, x is the nucleus of A, if every neighbourhood of x in A is
asymptotically as large as all of A. FixL > 0 and T> O. Let 0 = to < t 1 < ... <
tm- I < tm= T and let CI' C2' ••• , Cm be fixed constants with Cm ;6 O. Using the
uniform metric (d(F, G) = sup /F(t) - G(t»)), define A L to be the set of real-

O~t::S;;T

valued functions, F, on [0, T], such that F(O) = 0 and, for all x,y E [0, T),
IF(x) - F(y) I~ Llx - yj (i.e. F satisfies a Lipschitz condition with co­
efficient L). If

is nonvoid (in Section 3 we shall derive a sufficient condition for A to be
nonvoid), then the following is known to hold (see [2]):

1.1. THEOREM. A has a nucleus the broken linejoining thepoints (0, 0o),(t l ,°1),

... , (tm, Om), where 00 = 0 and°1, ••• , Om are the unique values which render the
quantity

m

B(OI' ...' Om) = 2: {(L(tl - tl_l ) + 01- 0H)ln(LUj - tl_l ) + 01- OJ-I)
j=1

a minimum, subject to 2:7'=1 Cj OJ = 1. (We denote by In the natural logarithm.)
444
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In this way, we obtain a nucleus by imposing the sum constraint
Li"=l cIF(tI) = 1. It will be shown in Section 3 that this nucleus maximizes a
certain functional over A. The question arises: what is the behaviour of the
sequence of nuclei arising from a sequence of such sum constraints when the
sums are Riemann sums for an integral S6 c(t)F(t)dt? It will be shown in
Section 4 that the sequence of nuclei converges to a function, P, which satisfies
the integral constraint ftf c(t)P(t)dt = 1. Furthermore, P satisfies the maxi­
mization condition to be proven for the sum case. The question of whether or
not F is the nucleus of the set of functions in AL satisfying the integral con­
straint is still open.

2. VARIATIONAL RESULTS

This section contains definitions and technical results to be used in later
convergence proofs. Here, we work on an arbitrary real interval, [a,b].

2.1. PROPOSITION. Ifp is an integrable function on [a, b], then

lim fb pet) tanh (Ap(t» dt = fb Ip(t)ldt.
A~ro a a

Proof FiXE: > OandletI\ = {t E [a,b]: Ip(t)1 < EM/3}, where M = (b - a)-to
By integrability, there is a Ksuch that, if /2 = {t: Ip(t)1 > K}, thenSlz Ip(t)ldt <
E/3. For A> 0, let us look at

I(A) = II>(t)tanh(A]J(t»dt - I: Ip(t)1 dtl

= f: Ip(t)1 {I - tanh (Alp(t)J)} dt

<f +I +I, whereI3 =[a,b]-I2 -It
II 12 13

< (b - a) EM/3 + E/3 +f
13

< 2E/3 + K I {I - tanh (AEM/3)} dt.
13

Now let

Ao =3(M~-)-larctanhmax{o,(1- ~)}.
Then if A> Ao,

I(A) < 2E/3 + Kf13 {I - (1 - ~)} dt

ME
< 2E/3 + K 3K (b - a) = E.

Q.E.D.
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Denote by PL the set of all Riemann integrable functions, p, on [a,b], for
which

f:lp(t)1 dt > IlL. 2.2

(O","w<l)

2.3. COROLLARY. Letp E PL' Then there is a A> 0 such that f~ p(t)j(t)dt = 1,
wherej(t) = L tanh (Ap(t».

Proof rCA) = L f~ p(t) tanh (,\p(t»dt is a continuous function of ,\ with
reO) = 0 and (by 2.1 and 2.2) Iimr(A) > 1. The required result then follows from

~-+oo

the intermediate value theorem.
Q.E.D.

IfpEPL, define DLP to be the set of Riemann integrable functions,/, satisfy­
ing If I<,L a.e. and S:p(t)f(t)dt= 1. Then 2.3 shows thatJE DLP, so that
DLP is nonvoid. Forf E DLP, define

H(f) =_fb{L+f(t)l L+f(t) L-f(t)l L-f(t)}d
2L n 2L + 2L n 2L t.

a

2.4. THEOREM. Let j be as in 2.3. Iff E DLP and f:f; j on a set of positive
measure, then H(f) < H(j).

Proof LetI(w) = He!+ w(f-j» for 0 "'" w "'" 1. Then

I'(W)=_~fb(f_j)lnL+j+w(f-~)dt,
2L a L-j-w(f-f)

and

/'(0) = -~ fb (f-j) In 1+ tanh (,\p) dt
2L a 1 - tanh ('\p)

A fb=-i a {f(t)-j(t)}p(t)dt

= 0, sincefandjare in DLP.

Furthermore,

" fb (f_j)2
I (w) = - a L2 _ {f+ w(f_j)}2 dt < 0

since Ij+ IV(f-j)1 "'" (1 - w)ljl + wl!1 < L a.e. By the mean value theorem,
then, l(l) < 1(0).

Q.E.D.
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2.5. COROLLARY. Let a and [3 be fixed with la - [31 ,,;;; L(b - a), and let F(t)
be the straight line joining the points (a, a) and (b, (3). If F =? F is any other
function joining these two points and satisfying a Lipschitz condition with co­
efficient L, then H(F') < H(F').

ProofF' andF' are in DL"whenp(t) == ([3 _a)-I. By 2.4, His maximized in
DLIJ for J(t) = Ltanh(Ap(t» == constant. Therefore, H(F') is maximized when
and only when Fis linear, i.e., F= F.

Q.E.D.

Let us now work on the interval [0, T), where, as before, T> 0 is fixed.
Denote by CL the set of Riemann integrable functions, c, on [0, T], satisfying

c(T) =? 0,
and

f~lr c(s)ds!dt > IlL.

Let A = {F E A L: f~ c(t)F(t)dt = I}. If FE A,

f~ c(t)F(t)dt = f; p(t)F'(t)dt,

where pet) = r c(s)ds E PLo Thus we have:

2.6

2.7

2.8

2.9. PROPOSITION. If FE A then F' E DL". Conversely, if f E DLIJ then
F(t) = f~f(s)ds EA. Furthermore, A is nonvoid, sinceJ(defined as in 2.3) is in
DLIJ. Define F(t) = f~J(s)ds.

2.10. PROPOSITION. ifF E A and F =? F, then H(F') < H(F').

Proof Immediate from 2.4.

3. CONNECTION WITH NUCLEI

Let us now relate maximization of H, as discussed in the previous section,
to the notion of a nucleus.

3.1. THEOREM. Let A be as in 1.1, and let F be its nucleus. Then Fis the unique
element which maximizes H(F') over A.

Proof As a consequence of 2.5, it is enough to consider functions
y xl.X2 ,xm(t) which are broken line functions connecting the points (0,0),
(tl>XI), ,(tm,xm), where !Xl-Xl-I!,,;;;L(ti-t i _ l ) (i=I,2, ...,m) and
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2:7'=1 CiXi = 1. We must maximize H(Y~I.X2, ... ,xm) over all admissible values
of Xl>" ., Xm. But

H( , ) - ~ It' fYXl, ... ,Xm --i::-I Ii_II }df

I ~
= - 2L i~1 {(L(ti - ti- I) + Xi - Xi-I) In (L(ti - f i- I) + Xi - Xi-I)

+ (L(ti - f i - I ) - Xi + Xi-I) In (L(ti - ti- I) - Xi + X,-I)

-2(ti - ti_ j )ln(2L(ti - ti- I »}
I I m

= - 2L R(XI,'··' xm) +LL (t i - ti- I) In (2L(ti - ti- I»·
i~1

The last sum does not depend on the Xi' We conclude from 1.1, then, that
H(Y~I ..... Xm) is maximized when and only whenYxl.x2, .... Xm = F.

Q.E.D.

The quantity H being maximized bears a striking resemblance to the
"communication entropy" of information theory. What meaningful analogy
(if any) can be drawn between the nucleus of a set and maximization of
communication entropy is not clear, however.

In the previous section, we rewrote the integral 53' c(t)F(t)dt in the form
56 p(t)F'(t)dt. Sum constraints can also be rewritten in this form, except that
p will not be continuous. The appropriate choice is

Indeed,

m

pet) = 2: Ct U(ti - t),
i=1

{
I when s > 0

where u(s) = 0
when s.,,;;O.

m j

= ~ Cj ~ It i
F'(t)dtL L... ti-J

j=1 i~l

since F(fo) = O.
This allows us to conclude that A is nonvoid if

I T ~ Itl Im IL < J0 Ip(t)1 dt =~ tJ-l i'£ Ct dt.
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that is, if

m \mil
~ l~j Cli (tj - t j - 1) > L'

If 3.2 holds, we can write the nucleus in 1.1 explicitly as

F(t) = L Jt tanh {,\ ~ Ci u(ti - S)} ds
o .~l

where'\ is chosen so that LT~I cIF(tl) = 1 (possible by 2.3).

4. CONVERGENCE

Let C E CL and letp(t) = Ii c(s)ds. Let

A = {F E A L : f: c(t) F(t) dt = I}.

449

3.2

We say that 17 = {to,t l , ... ,tm}is a partition of [O,T], ifO = to < t l < ... < tm- I <
tm = T; we then write 1171 = max (ti - ti - I ). Now let l7n= {ton, tin, ..., t::'(n)}

l~t"';;;;m

(n = 1,2, ... ; the superscripts are indices) be a sequence of such partitions with
lim 117n l = 0, and write
n~oo

m(n)
An = {F E AL : L c(tt) F(tt) (tt - t7-1) = I}.

1~1

As we saw in Section 3, the appropriate member of PL for An is
m(n)

Pn(t) = L c(tt)(ti
n- t7_I)u(tt - t).

1~1

4.1. THEOREM. Pn converges uniformly to pas n --+ CXJ.

Proof. Reasoning by contradiction, suppose the uniform convergence does
not occur. Then there is a 0> 0, an increasing sequence, {nj}j'=l> of positive
integers, and a sequence {Sj}%1 of numbers in [O,T), such that IPnJ(sj) - p(Sj)I>
o. We can assume-taking a further subsequence, if necessary-that SJ
converges to some S E [0, T). We have

IPnis) - p(S)I:> IPnj(sj) - p(sj)l- \PnJ(s) - Pn;CsJ)J-Jp(sJ) - p(S)I
> 0 -IPnis) - Pn;Csj)I-lp(Sj) - p(s)l·

Let us now prove the following.

LEMMA. lim IPnis) - Pn;CSj) I = O.
J~oo
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Fix E > 0. By integrability, there is a K> °such that, if

1= {t E [0, T]: !e(t)1 > K}, then r le(t)1 dt < e/4.

With K and I thus defined, let

{
o when tEl {C(t) when tEl

CI(t) = and clt) = °c(t) otherwise otherwise.

Now, there exists a J I such that j > J I implies

This is because the sum is a Riemann sum for the integral.
For eachj, denote by i(j) the smallest index, v, for which min (sj>s) < t~J <

max(sj>s); and by k(j), the largest. Then (with hi = tiJ - ti!..I),

k(j)

IPnls) - PnlSj)/ <; L Ic(trJ)Ihl
I~i(j)

k(j) kU)

= L ICI(tiJ)1 hi + L IC2(tiJ)/ hi
i=i(j) I=i(j)

k(j) n

< K L hi + L !eltiJ) Ihi
i~i(j) i=I

Since Sj --+ s, there is a J2 , such that j > J2 implies Is - sjl < e/(4K). Since
j7Tn l --+ 0, there is a J3, such that /7TnJ I< e/(4K) whenever j > J3• Thus, if
i> max(J1,J2,J3), then

IPnls) - Pnj(Sj) I< [Ke/(4K)] + [Ke/(4K)] + e/2= e.

This completes the proof of the lemma.

By the lemma, there is an M 1 such that !Pnls) - PnlSj) I< 8/4 whenever
j> MI' By the continuity of an integral with respect to the limits of integra­
tion, there is an M 2 forwhichj > M 2 implies Ip(sJ) - p(S) I< 8/4. Consequently,
IPnls) - p(s)/ > 8/2 whenever j> max (M1> M 2 ). But Pnis) U= 1,2, ...) is a
sequence of Riemann sums for f6 co(t)dt = pes), where

{
o for t < s

co(t) = c(t) ..lor t;;;:, s.

Thus, we have a contradiction.
Q.E.D.
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The last theorem has the following interpretation: If c is Riemann integrable
and {7Tn}:l is a sequence ofpartitions with l7Tn l -'>- 0, and ifRn(t) is the Riemann
sum for Ii c(s)ds, formed by restricting 7Tn to [t, T], then the convergence of
Rn(t) to fi c(s)ds is uniform in t.

4.2. COROLLARY. An is nonvoidfor all sufficiently large n.

Proof By assumption, fij Ip(t)1 dt > I/L, and by 4.1,

lim IT !Pn(t)! dt = IT Ip(t)1 dt.
n~oo 0 0

The conclusion then follows from 2.3 and from the results of Section 3.
Q.E.D.

In what follows, assume {7Tn}:l has been purged of any members for which
An is empty.

4.3. THEOREM. If Fn is the nucleus of An (n = 1,2, ...), then Fn converges
uniformly to

F(t) = L I: tanh (Ap(s))ds,

where Ais chosen so that

IT -o c(t) F(t) dt = 1.

Proof. The theorem follows from 4.1 and the representation

Fn(t) =L J: tanh(AnPn(s))ds,

where An is chosen so that

Q.E.D.
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