Convergence of Metric Nuclei

Jay E. Israel
Department of Mathematics, University of Western Australia, Nedlands, W.A., Australia

1. Introduction

A subset of a metric space is totally bounded if, for every $\epsilon>0$, it can be covered by a finite number of sets, each with diameter $\leqslant 2 \epsilon$. If A is totally bounded, $N_{\epsilon}(A)$ is the smallest number of sets in such a covering. Using $N_{\epsilon}(A)$ as a coarse indicator of the size of a set, G. Strang introduced the notion that a set can have a nucleus, a pre-eminent element at which the mass of the set is concentrated (see [1]). Using the terminology of [2], we say that x is the nucleus of A, if, for every neighbourhood, V, of x,

$$
N_{\epsilon}(A \cap V) \sim N_{\epsilon}(A) \quad(\epsilon \rightarrow 0) .
$$

In heuristic terms, x is the nucleus of A, if every neighbourhood of x in A is asymptotically as large as all of A. Fix $L>0$ and $T>0$. Let $0=t_{0}<t_{1}<\ldots<$ $t_{m-1}<t_{m}=T$ and let $c_{1}, c_{2}, \ldots, c_{m}$ be fixed constants with $c_{m} \neq 0$. Using the uniform metric $\left(d(F, G)=\sup _{0 \leqslant t \leqslant T}|F(t)-G(t)|\right)$, define Λ_{L} to be the set of realvalued functions, F, on $[0, T]$, such that $F(0)=0$ and, for all $x, y \in[0, T]$, $|F(x)-F(y)| \leqslant L|x-y|$ (i.e. F satisfies a Lipschitz condition with coefficient L). If

$$
A=\left\{F \in A_{L}: \sum_{i=1}^{m} c_{i} F\left(t_{i}\right)=1\right\}
$$

is nonvoid (in Section 3 we shall derive a sufficient condition for A to be nonvoid), then the following is known to hold (see [2]):
1.1. Theorem. A has a nucleus the broken line joining the points $\left(0, \theta_{0}\right),\left(t_{1}, \theta_{1}\right)$, $\ldots,\left(t_{m}, \theta_{m}\right)$, where $\theta_{0}=0$ and $\theta_{1}, \ldots, \theta_{m}$ are the unique values which render the quantity

$$
\begin{aligned}
B\left(\theta_{1}, \ldots, \theta_{m}\right)=\sum_{i=1}^{m} & \left\{\left(L\left(t_{i}-t_{i-1}\right)+\theta_{i}-\theta_{i-1}\right) \ln \left(L\left(t_{i}-t_{i-1}\right)+\theta_{i}-\theta_{i-1}\right)\right. \\
& \left.+\left(L\left(t_{i}-t_{i-1}\right)-\theta_{i}+\theta_{i-1}\right) \ln \left(L\left(t_{i}-t_{i-1}\right)-\theta_{i}+\theta_{i-1}\right)\right\}
\end{aligned}
$$

a minimum, subject to $\sum_{i=1}^{m} c_{l} \theta_{l}=1$. (We denote by \ln the natural logarithm.)

In this way, we obtain a nucleus by imposing the sum constraint $\sum_{i=1}^{m} c_{i} F\left(t_{i}\right)=1$. It will be shown in Section 3 that this nucleus maximizes a certain functional over A. The question arises: what is the behaviour of the sequence of nuclei arising from a sequence of such sum constraints when the sums are Riemann sums for an integral $\int_{0}^{T} c(t) F(t) d t$? It will be shown in Section 4 that the sequence of nuclei converges to a function, \widetilde{F}, which satisfies the integral constraint $\int_{0}^{T} c(t) \tilde{F}(t) d t=1$. Furthermore, \tilde{F} satisfies the maximization condition to be proven for the sum case. The question of whether or not \widetilde{F} is the nucleus of the set of functions in Λ_{L} satisfying the integral constraint is still open.

2. Variational Results

This section contains definitions and technical results to be used in later convergence proofs. Here, we work on an arbitrary real interval, $[a, b]$.

2.1. Proposition. If p is an integrable function on $[a, b]$, then

$$
\lim _{\lambda \rightarrow \infty} \int_{a}^{b} p(t) \tanh (\lambda p(t)) d t=\int_{a}^{b}|p(t)| d t
$$

Proof. Fix $\epsilon>0$ and let $I_{1}=\{t \in[a, b]:|p(t)|<\epsilon M / 3\}$, where $M=(b-a)^{-1}$. By integrability, there is a K such that, if $I_{2}=\{t:|p(t)|>K\}$, then $\int_{I_{2}}|p(t)| d t<$ $\epsilon / 3$. For $\lambda>0$, let us look at

$$
\begin{aligned}
I(\lambda) & =\left|\int_{a}^{b} p(t) \tanh (\lambda p(t)) d t-\int_{a}^{b}\right| p(t)|d t| \\
& =\int_{a}^{b}|p(t)|\{1-\tanh (\lambda|p(t)|)\} d t \\
& \leqslant \int_{I_{1}}+\int_{I_{2}}+\int_{I_{3}}, \quad \text { where } I_{3}=[a, b]-I_{2}-I_{1} \\
& \leqslant(b-a) \in M / 3+\epsilon / 3+\int_{I_{3}} \\
& \leqslant 2 \epsilon / 3+K \int_{I_{3}}\{1-\tanh (\lambda \epsilon M / 3)\} d t .
\end{aligned}
$$

Now let

$$
\lambda_{0}=3(M \epsilon)^{-1} \operatorname{arctanh} \max \left\{0,\left(1-\frac{M \epsilon}{3 K}\right)\right\} .
$$

Then if $\lambda>\lambda_{0}$,

$$
\begin{aligned}
I(\lambda) & \leqslant 2 \epsilon / 3+K \int_{x_{3}}\left\{1-\left(1-\frac{M \epsilon}{3 K}\right)\right\} d t \\
& \leqslant 2 \epsilon / 3+K \frac{M \epsilon}{3 K}(b-a)=\epsilon .
\end{aligned}
$$

Denote by P_{L} the set of all Riemann integrable functions, p, on $[a, b]$, for which

$$
\int_{a}^{b}|p(t)| d t>1 / L
$$

2.3. Corollary. Let $p \in P_{L}$. Then there is $a \lambda>0$ such that $\int_{a}^{b} p(t) \tilde{f}(t) d t=1$, where $\tilde{f}(t)=L \tanh (\lambda p(t))$.

Proof. $r(\lambda)=L \int_{a}^{b} p(t) \tanh (\lambda p(t)) d t$ is a continuous function of λ with $r(0)=0$ and (by 2.1 and 2.2) $\lim _{\lambda \rightarrow \infty} r(\lambda)>1$. The required result then follows from the intermediate value theorem.
Q.E.D.

If $p \in P_{L}$, define $D_{L}{ }^{p}$ to be the set of Riemann integrable functions, f, satisfying $|f| \leqslant L$ a.e. and $\int_{a}^{b} p(t) f(t) d t=1$. Then 2.3 shows that $\tilde{f} \in D_{L}{ }^{p}$, so that $D_{L}{ }^{p}$ is nonvoid. For $f \in D_{L}{ }^{p}$, define

$$
H(f)=-\int_{a}^{b}\left\{\frac{L+f(t)}{2 L} \ln \frac{L+f(t)}{2 L}+\frac{L-f(t)}{2 L} \ln \frac{L-f(t)}{2 L}\right\} d t
$$

2.4. Theorem. Let \tilde{f} be as in 2.3. If $f \in D_{\mathrm{L}}{ }^{p}$ and $f \neq \tilde{f}$ on a set of positive measure, then $H(f)<H(\tilde{f})$.

Proof. Let $I(w)=H(\tilde{f}+w(f-\tilde{f}))$ for $0 \leqslant w \leqslant 1$. Then

$$
I^{\prime}(w)=-\frac{1}{2 L} \int_{a}^{b}(f-\tilde{f}) \ln \frac{L+\tilde{f}+w(f-\tilde{f})}{L-\tilde{f}-w(f-\tilde{f})} d t
$$

and

$$
\begin{aligned}
I^{\prime}(0) & =-\frac{1}{2 L} \int_{a}^{b}(f-\tilde{f}) \ln \frac{1+\tanh (\lambda p)}{1-\tanh (\lambda p)} d t \\
& =-\frac{\lambda}{L} \int_{a}^{b}\{f(t)-\tilde{f}(t)\} p(t) d t \\
& =0, \quad \text { since } f \text { and } \tilde{f} \text { are in } D_{L}{ }^{p} .
\end{aligned}
$$

Furthermore,

$$
I^{\prime \prime}(w)=-\int_{a}^{b} \frac{(f-\tilde{f})^{2}}{L^{2}-\{\tilde{f}+w(f-\tilde{f})\}^{2}} d t<0 \quad(0 \leqslant w<1)
$$

since $|\tilde{f}+w(f-\tilde{f})| \leqslant(1-w)|\tilde{f}|+w|f|<L$ a.e. By the mean value theorem, then, $I(1)<I(0)$.
Q.E.D.
2.5. Corollary. Let α and β be fixed with $|\alpha-\beta| \leqslant L(b-a)$, and let $\tilde{F}(t)$ be the straight line joining the points (a, α) and (b, β). If $F \neq \tilde{F}$ is any other function joining these two points and satisfying a Lipschitz condition with coefficient L, then $H\left(F^{\prime}\right)<H\left(\tilde{F}^{\prime}\right)$.

Proof. F^{\prime} and \tilde{F}^{\prime} are in $D_{L}{ }^{p}$ when $p(t) \equiv(\beta-\alpha)^{-1}$. By $2.4, H$ is maximized in $D_{L}{ }^{p}$ for $\tilde{f}(t)=L \tanh (\lambda p(t)) \equiv$ constant. Therefore, $H\left(F^{\prime}\right)$ is maximized when and only when F is linear, i.e., $F=\tilde{F}$.
Q.E.D.

Let us now work on the interval $[0, T]$, where, as before, $T>0$ is fixed. Denote by C_{L} the set of Riemann integrable functions, c, on $[0, T]$, satisfying

$$
c(T) \neq 0
$$

and

$$
\int_{0}^{T}\left|\int_{t}^{T} c(s) d s\right| d t>1 / L
$$

Let $A=\left\{F \in A_{L}: \int_{0}^{T} c(t) F(t) d t=1\right\}$. If $F \in A$,

$$
\int_{0}^{T} c(t) F(t) d t=\int_{0}^{T} p(t) F^{\prime}(t) d t
$$

where $p(t)=\int_{t}^{T} c(s) d s \in P_{L}$. Thus we have:
2.9. Proposition. If $F \in A$ then $F^{\prime} \in D_{L}{ }^{p}$. Conversely, if $f \in D_{L}{ }^{p}$ then $F(t)=\int_{0}^{t} f(s) d s \in A$. Furthermore, A is nonvoid, since $f($ defined as in 2.3) is in $D_{L}{ }^{p}$. Define $\tilde{F}(t)=\int_{0}^{t} \tilde{f}(s) d s$.
2.10. Proposition. If $F \in A$ and $F \neq \widetilde{F}$, then $H\left(F^{\prime}\right)<H\left(\tilde{F}^{\prime}\right)$.

Proof. Immediate from 2.4.

3. Connection with Nuclei

Let us now relate maximization of H, as discussed in the previous section, to the notion of a nucleus.
3.1. Theorem. Let A be as in 1.1, and let \tilde{F} be its nucleus. Then \tilde{F} is the unique element which maximizes $H\left(\widetilde{F}^{\prime}\right)$ over A.

Proof. As a consequence of 2.5 , it is enough to consider functions $y_{x_{1}, x_{2}, \ldots, x_{m}}(t)$ which are broken line functions connecting the points $(0,0)$, $\left(t_{1}, x_{1}\right), \ldots,\left(t_{m}, x_{m}\right)$, where $\left|x_{i}-x_{i-1}\right| \leqslant L\left(t_{i}-t_{i-1}\right) \quad(i=1,2, \ldots, m) \quad$ and
$\sum_{i=1}^{m} c_{i} x_{i}=1$. We must maximize $H\left(y_{x_{1}, x_{2}, \ldots, x_{n}}^{\prime}\right)$ over all admissible values of x_{1}, \ldots, x_{m}. But
$H\left(y_{x_{1}, \ldots, x_{m}}^{\prime}\right)=-\sum_{i=1}^{m} \int_{t_{i-1}}^{t_{i}}\{\quad\} d t$

$$
\begin{aligned}
=-\frac{1}{2 L} \sum_{i=1}^{m} & \left\{\left(L\left(t_{i}-t_{i-1}\right)+x_{i}-x_{i-1}\right) \ln \left(L\left(t_{i}-t_{i-1}\right)+x_{i}-x_{i-1}\right)\right. \\
& +\left(L\left(t_{i}-t_{i-1}\right)-x_{i}+x_{i-1}\right) \ln \left(L\left(t_{i}-t_{i-1}\right)-x_{i}+x_{i-1}\right) \\
& \left.-2\left(t_{i}-t_{i-1}\right) \ln \left(2 L\left(t_{i}-t_{i-1}\right)\right)\right\} \\
= & -\frac{1}{2 L} B\left(x_{1}, \ldots, x_{m}\right)+\frac{1}{L} \sum_{i=1}^{m}\left(t_{i}-t_{i-1}\right) \ln \left(2 L\left(t_{i}-t_{i-1}\right)\right)
\end{aligned}
$$

The last sum does not depend on the x_{i}. We conclude from 1.1, then, that $H\left(y_{x_{1}, \ldots, x_{m}}^{\prime}\right)$ is maximized when and only when $y_{x_{1}, x_{2}, \ldots, x_{m}}=\tilde{F}$.
Q.E.D.

The quantity H being maximized bears a striking resemblance to the "communication entropy" of information theory. What meaningful analogy (if any) can be drawn between the nucleus of a set and maximization of communication entropy is not clear, however.

In the previous section, we rewrote the integral $\int_{0}^{T} c(t) F(t) d t$ in the form $\int_{0}^{T} p(t) F^{\prime}(t) d t$. Sum constraints can also be rewritten in this form, except that p will not be continuous. The appropriate choice is

$$
p(t)=\sum_{i=1}^{m} c_{i} u\left(t_{i}-t\right), \quad \text { where } u(s)= \begin{cases}1 & \text { when } s>0 \\ 0 & \text { when } s \leqslant 0\end{cases}
$$

Indeed,

$$
\begin{aligned}
\int_{0}^{T} p(t) F^{\prime}(t) d t & =\sum_{i=1}^{m} \int_{t_{i-1}}^{t_{i}}\left\{\sum_{j=i}^{m} c_{j}\right\} F^{\prime}(t) d t \\
& =\sum_{j=1}^{m} c_{j} \sum_{i=1}^{j} \int_{t_{i-1}}^{t_{i}} F^{\prime}(t) d t \\
& =\sum_{j=1}^{m} c_{j} F\left(t_{j}\right)
\end{aligned}
$$

since $F\left(t_{0}\right)=0$.
This allows us to conclude that A is nonvoid if

$$
\frac{1}{L}<\int_{0}^{T}|p(t)| d t=\sum_{j=1}^{m} \int_{i_{j-1}}^{t_{j}}\left|\sum_{i=j}^{m} c_{i}\right| d t
$$

that is, if

$$
\sum_{j=1}^{m}\left|\sum_{i=j}^{m} c_{i}\right|\left(t_{j}-t_{j-1}\right)>\frac{1}{L}
$$

If 3.2 holds, we can write the nucleus in 1.1 explicitly as

$$
\tilde{F}(t)=L \int_{0}^{t} \tanh \left\{\lambda \sum_{i=1}^{m} c_{i} u\left(t_{i}-s\right)\right\} d s
$$

where λ is chosen so that $\sum_{i=1}^{m} c_{i} \tilde{F}\left(t_{i}\right)=1$ (possible by 2.3).

4. Convergence

Let $c \in C_{L}$ and let $p(t)=\int_{t}^{T} c(s) d s$. Let

$$
A=\left\{F \in \Lambda_{L}: \int_{0}^{T} c(t) F(t) d t=1\right\}
$$

We say that $\pi=\left\{t_{0}, t_{1}, \ldots, t_{m}\right\}$ is a partition of $[0, T]$, if $0=t_{0}<t_{1}<\ldots<t_{m-1}<$ $t_{m}=T$; we then write $|\pi|=\max _{1 \leqslant t \leqslant m}\left(t_{i}-t_{i-1}\right)$. Now let $\pi_{n}=\left\{t_{0}{ }^{n}, t_{1}{ }^{n}, \ldots, t_{m(n)}^{n}\right\}$ ($n=1,2, \ldots$; the superscripts are indices) be a sequence of such partitions with $\lim _{n \rightarrow \infty}\left|\pi_{n}\right|=0$, and write

$$
A_{n}=\left\{F \in \Lambda_{L}: \sum_{i=1}^{m(n)} c\left(t_{i}^{n}\right) F\left(t_{i}^{n}\right)\left(t_{i}^{n}-t_{i-1}^{n}\right)=1\right\}
$$

As we saw in Section 3, the appropriate member of P_{L} for A_{n} is

$$
p_{n}(t)=\sum_{i=1}^{m(n)} c\left(t_{i}^{n}\right)\left(t_{i}^{n}-t_{i-1}^{n}\right) u\left(t_{i}^{n}-t\right)
$$

4.1. Theorem. p_{n} converges uniformly to p as $n \rightarrow \infty$.

Proof. Reasoning by contradiction, suppose the uniform convergence does not occur. Then there is a $\delta>0$, an increasing sequence, $\left\{n_{j}\right\}_{j=1}^{\infty}$, of positive integers, and a sequence $\left\{s_{j}\right\}_{j=1}^{\infty}$ of numbers in $[0, T]$, such that $\left|p_{n_{j}}\left(s_{j}\right)-p\left(s_{j}\right)\right|>$ δ. We can assume-taking a further subsequence, if necessary-that s_{j} converges to some $s \in[0, T]$. We have

$$
\begin{aligned}
\left|p_{n_{j}}(s)-p(s)\right| & \geqslant\left|p_{n_{j}}\left(s_{j}\right)-p\left(s_{j}\right)\right|-\left|p_{n j}(s)-p_{n_{j}}\left(s_{j}\right)\right|-\left|p\left(s_{j}\right)-p(s)\right| \\
& >\delta-\left|p_{n_{j}}(s)-p_{n_{j}}\left(s_{j}\right)\right|-\left|p\left(s_{j}\right)-p(s)\right| .
\end{aligned}
$$

Let us now prove the following.
Lemma. $\lim _{j \rightarrow \infty}\left|p_{n j}(s)-p_{n j}\left(s_{j}\right)\right|=0$.

Fix $\epsilon>0$. By integrability, there is a $K>0$ such that, if

$$
I=\{t \in[0, T]:|c(t)|>K\}, \quad \text { then } \int_{I}|c(t)| d t<\epsilon / 4
$$

With K and I thus defined, let

$$
c_{1}(t)=\left\{\begin{array}{ll}
0 & \text { when } t \in I \\
c(t) & \text { otherwise }
\end{array} \text { and } \quad c_{2}(t)= \begin{cases}c(t) & \text { when } t \in I \\
0 & \text { otherwise } .\end{cases}\right.
$$

Now, there exists a J_{1} such that $j>J_{1}$ implies

$$
\sum_{i=1}^{m(n)}\left|c_{2}\left(t_{i}^{n_{j}}\right)\right|\left(t_{i}^{n_{J}}-t_{i-1}^{n_{J}}\right)<2 \int_{0}^{T}\left|c_{2}(t)\right| d t<\epsilon / 2 .
$$

This is because the sum is a Riemann sum for the integral.
For each j, denote by $i(j)$ the smallest index, v, for which $\min \left(s_{j}, s\right)<t_{\nu}^{n J} \leqslant$ $\max \left(s_{j}, s\right)$; and by $k(j)$, the largest. Then (with $h_{i}=t_{i}^{n_{j}}-t_{i-1}^{n_{j}}$),

$$
\begin{aligned}
\left|p_{n_{j}}(s)-p_{n j}\left(s_{j}\right)\right| & \leqslant \sum_{i=i(j)}^{k(j)}\left|c\left(t_{i}^{n j}\right)\right| h_{i} \\
& =\sum_{i=i(j)}^{k(j)}\left|c_{1}\left(t_{i}^{n j}\right)\right| h_{i}+\sum_{i=i(j)}^{k(j)}\left|c_{2}\left(t_{i}^{n j}\right)\right| h_{i} \\
& \leqslant K \sum_{i=i(j)}^{k(j)} h_{i}+\sum_{i=1}^{n}\left|c_{2}\left(t_{i}^{n j}\right)\right| h_{i} \\
& \leqslant K\left(t_{i(j)}^{n j}-t_{i(j)-1}^{n j}\right)+K\left|s-s_{j}\right|+\frac{1}{2} \epsilon, \quad \text { if } j>J_{1} .
\end{aligned}
$$

Since $s_{j} \rightarrow s$, there is a J_{2}, such that $j>J_{2}$ implies $\left|s-s_{j}\right|<\epsilon /(4 K)$. Since $\left|\pi_{n}\right| \rightarrow 0$, there is a J_{3}, such that $\left|\pi_{n j}\right|<\epsilon /(4 K)$ whenever $j>J_{3}$. Thus, if $i>\max \left(J_{1}, J_{2}, J_{3}\right)$, then

$$
\left|p_{n_{j}}(s)-p_{n_{j}}\left(s_{j}\right)\right|<[K \epsilon /(4 K)]+[K \epsilon /(4 K)]+\epsilon / 2=\epsilon .
$$

This completes the proof of the lemma.
By the lemma, there is an M_{1} such that $\left|p_{n_{j}}(s)-p_{n_{j}}\left(s_{j}\right)\right|<\delta / 4$ whenever $j>M_{1}$. By the continuity of an integral with respect to the limits of integration, there is an M_{2} for which $j>M_{2}$ implies $\left|p\left(s_{j}\right)-p(s)\right|<\delta / 4$. Consequently, $\left|p_{n_{j}}(s)-p(s)\right|>\delta / 2$ whenever $j>\max \left(M_{1}, M_{2}\right)$. But $p_{n_{j}}(s)(j=1,2, \ldots)$ is a sequence of Riemann sums for $\int_{0}^{T} c_{0}(t) d t=p(s)$, where

$$
c_{0}(t)= \begin{cases}0 & \text { for } t<s \\ c(t) & \text { for } t \geqslant s\end{cases}
$$

Thus, we have a contradiction.
Q.E.D.

The last theorem has the following interpretation: If c is Riemann integrable and $\left\{\pi_{n}\right\}_{n=1}^{\infty}$ is a sequence of partitions with $\left|\pi_{n}\right| \rightarrow 0$, and if $R_{n}(t)$ is the Riemann sum for $\int_{t}^{T} c(s) d s$, formed by restricting π_{n} to $[t, T]$, then the convergence of $R_{n}(t)$ to $\int_{t}^{T} c(s) d s$ is uniform in t.
4.2. Corollary. A_{n} is nonvoid for all sufficiently large n.

Proof. By assumption, $\int_{0}^{T}|p(t)| d t>1 / L$, and by 4.1,

$$
\lim _{n \rightarrow \infty} \int_{0}^{T}\left|p_{n}(t)\right| d t=\int_{0}^{T}|p(t)| d t
$$

The conclusion then follows from 2.3 and from the results of Section 3.
Q.E.D.

In what follows, assume $\left\{\pi_{n}\right\}_{n=1}^{\infty}$ has been purged of any members for which A_{n} is empty.
4.3. Theorem. If \tilde{F}_{n} is the nucleus of $A_{n}(n=1,2, \ldots)$, then \tilde{F}_{n} converges uniformly to

$$
\tilde{F}(t)=L \int_{0}^{t} \tanh (\lambda p(s)) d s
$$

where λ is chosen so that

$$
\int_{0}^{T} c(t) \tilde{F}(t) d t=1
$$

Proof. The theorem follows from 4.1 and the representation

$$
\tilde{F}_{n}(t)=L \int_{0}^{t} \tanh \left(\lambda_{n} p_{n}(s)\right) d s
$$

where λ_{n} is chosen so that

$$
\sum_{i=1}^{m(n)} c\left(t_{i}^{n}\right) \tilde{F}_{n}\left(t_{i}^{n}\right)\left(t_{i}^{n}-t_{i-1}^{n}\right)=1
$$

Q.E.D.

Acknowledgment

This text incorporates suggestions made by the referee.

References

1. G. Strang, The nucleus of a set. Canadian Math. Bulletin 11, in press.
2. J. E. Israel, Entropic determination of a metric nucleus. J. Approx. Theory 1 (1968), 189-198.
