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1. INTRODUCTION

A subset of a metric space is totally bounded if, for every € >0, it can be
covered by a finite number of sets, each with diameter <2e. If 4 is totally
bounded, N(4) is the smallest number of sets in such a covering. Using N,(4)
as a coarse indicator of the size of a set, G. Strang introduced the notion that
a set can have a nucleus, a pre-eminent element at which the mass of the set is
concentrated (see [/]). Using the terminology of [2], we say that x is the nucleus
of 4, if, for every neighbourhood, V, of x,

NAANV)~N4) (e —0).

In heuristic terms, x is the nucleus of A4, if every neighbourhood of x in 4 is

asymptotically as large asallof 4. Fix L>0and 7> 0. Let 0=ty <t; < ... <

tyoy <tn,=T and let ¢;,c¢,,...,¢, be fixed constants with ¢, # 0. Using the

uniform metric (d(F,G) = Sup [F(t) — G(1))), define 4, to be the set of real-
ELEY

valued functions, F, on [0,T], such that F(0) =0 and, for all x,y €[0,T]),
|F(x) — F(»)| <L|x—y| (i.e. F satisfies a Lipschitz condition with co-
efficient L). If

A ={FE/1LI § ¢ F(t)=1

i=1
is nonvoid (in Section 3 we shall derive a sufficient condition for A4 to be
nonvoid), then the following is known to hold (see [2]):

1.1. THEOREM. A has a nucleus the broken line joining the points (0, 8,),(¢,, 8,),
eves(tms O), where 8y =0 and 0,,...,8,, are the unique values which render the
quantity

B(O s O) = 3 (L= i) + 0= B ) (Lt = 1) + 6, — ,2)
+ (Lt =) =6+ 0 ) In(L(t; — t;-) — 0, + 6,)}

a minimum, subject to 27, ¢, 0, = 1. (We denote by In the natural logarithm.)
444
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In this way, we obtain a nucleus by imposing the sum consiraint
>y e F(t) = 1. It will be shown in Section 3 that this nucleus maximizes a
certain functional over 4. The question arises: what is the behaviour of the
sequence of nuclei arising from a sequence of such sum constraints when the
sums are Riemann sums for an integral {§ c(t) F(t)dt? It will be shown in
Section 4 that the sequence of nuclei converges to a function, F, which satisfies
the integral constraint {§ ¢(t) F(t)dt = 1. Furthermore, F satisfies the maxi-
mization condition to be proven for the sum case. The question of whether or
not Fis the nucleus of the set of functions in A, satisfying the integral con-
straint is still open.

2. VARIATIONAL RESULTS

This section contains definitions and technical results to be used in later
convergence proofs. Here, we work on an arbitrary real interval, [a,b].

2.1. PROPOSITION. If p is an integrable function on [a,b), then
lim " plt) tanh Qp(t)) dt = | " | o).
Ao /A a
Proof. Fix e > 0andlet I, = {t € {a,b]: | p(¢)| < eM/3}, where M = (b — a)™".

By integrability, there is a K such that, if I, = {t:| p(t)| > K}, then [, | p(t)| dt <
¢/3. For A >0, let us look at

10 = |[* sy anh Qp(e) de — [ [p(0)] ot
= [* 1501 11 - tanh A p(r) D}t
<Ll+fh+fh, where I; =[a,b] - I, - I,
<(b——a)eM/3+e/3+f13

<23+K f ,, {1~ tanh QeM/3)} dr.
Now let
Ao = 3(Me)™! arctanh max {0, (1 - 3%5)}
Then if A > A,

I(N) <2¢/3 + Kf“ {1 - (1 —%(f)}dt

<2€/3+K3M15(b—a)=e.
Q.E.D.
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Denote by P, the set of all Riemann integrable functions, p, on [a,b], for
which

[l dr> L. 22

2.3. COROLLARY. Let p € P;. Then there is a X > 0 such that {% p(t) f(¢)dt = 1,
where f(t) = Ltanh (Ap(2)).

Proof. r(X) =L [} p(t)tanh(Ap(¢))dt is a continuous function of A with
r(0) =0 and (by 2.1 and 2.2) lim#(A) > 1. The required result then follows from
A0

the intermediate value theorem.
Q.E.D.

If p € Py, define D" to be the set of Riemann integrable functions, f, satisfy-
ing | f| <L a.e. and [% p(t)f(t)dt = 1. Then 2.3 shows that fe D,?, so that
D,? is nonvoid. For f € D;?, define

L+f@) L+f) L~ f(t) L—-f®),
H(f)z*fa{ =57 =57

2.4. THEOREM. Let f be as in 2.3. If f€ D,? and f # f on a set of positive
measure, then H(f) < H(f).

Proof. Let I(w) = H(f+ w(f—f)) for 0 < w < 1. Then
L+f+w(f~f)

oy —— L or
re)=—g | - R,
and
r@=-g [ =Hing =22
-2 f (A — Tt di
=0, since fand farein D,%.
Furthermore,

b .y
I"(w)=—f Lz—{;{-w]:j)'—f)}zdt<0 O<w<l)
since | 4+ w(f—f)| < (1 —w)| f| + w| f| < L a.e. By the mean value theorem,
then, I(1) < K0).

Q.E.D.
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2.5. COROLLARY. Let « and B be fixed with |o — B| < L(b — a), and let F(t)
be the straight line joining the points (a,e) and (b,B). If F # F is any other
Sunction joining these two points and satisfying a Lipschitz condition with co-
efficient L, then H(F") < H(F").

Proof. F' and F” are in D,;? when p(t) = (8 — o)~'. By 2.4, H is maximized in
D;? for f(t) = Ltanh (Ap(t)) = constant. Therefore, H(F') is maximized when

and only when F'is linear, i.e., F=F.
Q.E.D.

Let us now work on the interval [0,T], where, as before, T> 0 is fixed.
Denote by Cy, the set of Riemann integrable functions, ¢, on [0,T], satisfying

o(T)Y+#0, 2.6
and

[ :’ | T e(s) dsidt > 1/L. 2.7
Let A={Fe A, f: c()F(t)dt=1). T Fe 4,

f Z c()F()dt = f ; PO F'(t)dt, 2.8

where p(¢) = f,T ¢(s)ds € P,. Thus we have:

2.9. PrROPOSITION. If Fe A then F' € D,P. Conversely, if fe D.? then
F(t) = [ f(s)ds € A. Furthermore, A is nonvoid, since f (defined as in 2.3) is in
D, P. Define F(t) = {4 f(s)ds.

2.10. PROPOSITION. If F € A and F # F, then H(F') < H(F").
Proof. Immediate from 2.4,

3. CONNECTION WITH NUCLEI

Let us now relate maximization of H, as discussed in the previous section,
to the notion of a nucleus.

3.1. THEOREM. Let A be as in 1.1, and let F be its nucleus. Then F is the unique
element which maximizes H(F"') over A.

Proof. As a consequence of 2.5, it is enough to consider functions
Yxi,x2,...,xa\t) Which are broken line functions connecting the points (0,0),
(t15%1)s ooy (tmoXm), Where [x;—x;_ | <L{t;—t_,) (@(E=12,...,m) and
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x.) over all admissible values

......

HGo o)== 2 [ e

| A
=737 '21 {(L(t; = i)+ xy— X)) In (Lt — 12y) + X — X4-y)

(Lt = tiog) ~ X+ X ) In (Lt — 1) ~ X+ X)
=2t — ti-) InQL(G ~ 1))}

m

1 1
= =37 BCis ) + 7 Z (fs — 1) I QL(E — 1),
The last sum does not depend on the x;. We conclude from 1.1, then, that
H(¥%,. ..., xn) is maximized when and only when y,, ,, .. .. =F.

Q.E.D.

The quantity H being maximized bears a striking resemblance to the
“communication entropy” of information theory. What meaningful analogy
(if any) can be drawn between the nucleus of a set and maximization of
communication entropy is not clear, however.

In the previous section, we rewrote the integral {3 c(¢) F(z)dt in the form
[& p(¢) F'(¢)dt. Sum constraints can also be rewritten in this form, except that
p will not be continuous. The appropriate choice is

m

p(t)= 2 cu(t;—1), where u(s) = {

i=1

1 whens>0
0 whens<O.
Indeed,

ti-1 \Jj=i
m J
"
=S [t Feyd
i-1
1 i=1

=2 ¢ F(t,
J=1

f:p(z)F'(t)dt=§f" {§ cj}F'(t)dt

since F(t,) = 0.
This allows us to conclude that 4 is nonvoid if

L= [ona=> |

ty-t

m

dr.

2 G
1=J
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that is, if
1

i 1
z ci’(tj~tj*l)>Z‘ 3.2
i=J

>

J=1

If 3.2 holds, we can write the nucleus in 1.1 explicitly as
t m
F=L f tanh {)\ S cu(t, — s)} ds
0 i=1

where A is chosen so that 3™, ¢, F(t,) = 1 (possible by 2.3).

4, CONVERGENCE

Let ¢ € C, and let p(1) = [T c(s)ds. Let
A ={FeAL:f0T () F()di=1).

We say that 7 = {fo,f,,...,tutisa partition of [0, TLif0 =ty <, <... <t <
tn=T; we then write || = max (f; —¢,_,). Now let m, = {t;",1,", ..., thm}

1<i<m
(n=1,2,...; the superscripts are indices) be a sequence of such partitions with
lim |m,| =0, and write

n—»

m(n)
Ay ={Fe,: iZl etV () (6" — 1) = 1}

As we saw in Section 3, the appropriate member of P, for 4, is
m(n)

Pu(t) = 121 et (" — o) u” — 1).

4.1. THEOREM. p, converges uniformly to p as n — .

Proof. Reasoning by contradiction, suppose the uniform convergence does
not occur. Then there is a 6 > 0, an increasing sequence, {n;}7.;, of positive
integers, and a sequence {s;}7; of numbersin [0, T, such that | p, (s) — p(s )| >
8. We can assume—taking a further subsequence, if necessary—that s,
converges to some s € [0, T]. We have

lpnj(s) “P(s)| = lpﬂj(sj) —p(S_,)l - lpﬂj(s) “pnj(sj)l - lp(sj) '—p(S)I
> 8 — [ pn)(8) = Pufs)| = | P(s) — p(5)].
Let us now prove the following.

LEMMA. lim|p, (s) — pa(s)| = 0.
J—
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Fix € > 0. By integrability, there is a K> 0 such that, if
I={1e[0,T]:|e(t)| > K}, then J'l le(1)] dt < /4.
With K and 7 thus defined, let

0 when t el
¢(t) otherwise

_fe(t) whentel
and - &,(1) = {O otherwise.

o(t) = {
Now, there exists a J; such that j > J, implies
m(n)" T
.Zl et (e — 1321) <2 fo |ea(t)| dt < €/2.

This is because the sum is 2 Riemann sum for the integral.
For each j, denote by i(j) the smallest index, v, for which min(s;,s) < <
max(s;,s); and by k(j), the largest. Then (with A; = ¥ — 1]7;),

P9 =Pule)] < 2 JeleElh

k(D k()
= 2> |a()m+ 2 |e(t)h
) i=i())

i=i(J

i=i(J

k() n
<K Z(.) hy + 121 lex(t1)] by
< Kty — tilh-1) + K| s — 55| + 3¢, ifj>J,.

Since s; — s, there is a J,, such that j>J, implies |s — 5,/ < ¢/(4K). Since
|7a| =0, there is a J;, such that |m,,| < ¢/(4K) whenever j>J,;. Thus, if
i>max(J,J,,J3), then

[2n,(8) — puy(s)| < [Ke/(4K)] + [Ke/(4K)] + €e[2=.

This completes the proof of the lemma.

By the lemma, there is an M, such that |p,(s) — p,,(s,)| < 8/4 whenever
j> M,. By the continuity of an integral with respect to the limits of integra-
tion, thereis an M, for whichj > M, implies | p(s,) — p(s)| < 6/4. Consequently,
| Pa)(8) — p(s)| > 8/2 whenever j>max(M,,M,). But p,(s) (j=1,2,...)isa
sequence of Riemann sums for [§ ¢o(t)dt = p(s), where

0 fort<s

colt) = c(t) fort>s.

Thus, we have a contradiction.
Q.E.D.
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The last theorem has the following interpretation: If ¢ is Riemann integrable
and {7} | is a sequence of partitions with |m,| — 0, and if R,(¢}is the Riemann
sum for [T ¢(s)ds, formed by restricting =, to [, T], then the convergence of
R,(t) to T c(s)ds is uniform in .

4.2. COROLLARY. A, is nonvoid for all sufficiently large n.
Proof. By assumption, (¥ |p(r){dt > 1/L, and by 4.1,
. (T T
lim [ 0] dt = [ 1p(0) .

The conclusion then follows from 2.3 and from the results of Section 3.
Q.E.D.

In what follows, assume {m,}_, has been purged of any members for which
A, is empty.

4.3. TuroreM. If F, is the nucleus of A, (n=1,2,...), then F, converges
uniformly to

Fi=L f; tanh (Ap(s)) ds,

where A is chosen so that
f(’; c(t) F(t)dt =1.

Proof. The theorem follows from 4.1 and the representation

F(0)=L [, tanhQ,p,(s))ds,

where A, is chosen so that

1

min

S et B (1~ 11y) = 1.

i=1

Q.E.D.
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